

Review Article

Effect of irradiation on quality of spices

^{1,*}Alam Khan, K. and ²Abrahem, M.

¹Agro-Processing Division, Central Institute of Agricultural Engineering, Nabibagh, Bhopal-462038, INDIA ²Central Ostrobothnia University of Applied Sciences, (Pietersaari Unit), Paul Halvarin katu, 168600 Pietarsaari, FINLAND

Abstract: Irradiation has been shown to be an effective method for food decontamination. irradiation is a process of exposing spices to ionizing radiation such as gamma rays emitted from the radand 137Cs, or high energy electrons and X-rays produced by machine sources. The un of ioniting radiation to destroy harmful biological organisms in food is considered a safe, well proven pr as found many ieved applications. Depending on the absorbed dose of radiation, various effects can be a esulting in reduced storage losses, extended shelf life and/or improved microbiological and parasito of foods. The most common irradiated commercial products are spices and vegetable seasoning irradiation is increasingly ty, ar facilitates trade with food recognized as a method that reduces post-harvest losses, ensures hygienic products. This article reviews activities focusing on the irradiation of sp the food safety aspect.

Keywords: food irradiation, sensory quality, essential oils, viscom v GC, GC/MS, antioxidant activity

Introduction

Food contamination particularly with pathog non-sporeforming bacteria is one of the significant public health problems. cause of human suffering all over the to the World Health Organis MO), in 1992 represented the the infectious and parasiti most frequent cause of (a) worldwide, the arred majority of which og developing countries (Loaharanu, 1994). he thermal pasteurisation stablished and satisfactory of liquid foods contamination/disinfection of method of ten such commodities it has been shown inappropriate for solid foods and dry ingredients, or for fresh foods whose raw characteristics must be maintained to fulfill specific market requirements. Due to these reasons and keeping in mind the universality of the food spoilage problem, food irradiation has become one of the most promising programmes that attracted many countries during the movement to use "Atoms for Peace" (Boisseau, 1994). However, practical limitations precluded early industrial and commercial development and the application of these concepts. To

speed up the process of irradiation implementation, the WHO Food Safety Unit has described food irradiation as possibly the most significant contribution to public health to be made by food science and technology since the pasteurisation of milk at the end of the 19th century.

Radiation pasteurisation with low doses of gamma rays, X-rays, and electrons effectively controls food-borne pathogens. Irradiation leads to the destruction of pathogenic non-spore forming foodborne bacteria and parasitic organisms, such as trichina. As a consequence, it protects the consumers from mi-croorganisms-related diseases such as salmonellosis, hemorrhagic diarrhoea caused by Escherichia coli, or gastroenteritis from Vibrio vulnificus (Thayer et al., 1996). The application of ionising radiation in food processing is based mainly on the principle that ionising radiation causes very effective disruption of DNA molecules in the nuclei of cells (Diehl, 1995) rendering them inactivated. Therefore microorganisms, insect gametes, and plant meristems are prevented from their reproduction, which consequently results in various preservative effects as a function of the absorbed radiation dose

(Table 1), while chemical or other radiation-induced changes in food are minimal (Thayer, 1990).

An important reason for the relatively high sensitivity of DNA to the effects of ionising radiation is the fact that DNA molecules are much larger than other molecular structures inside the cell. The damage is either direct, caused by reactive oxygen-centred (•OH) radicals originating from the radiolysis of water, or indirect. In the case of an indirect hit, the damage to the nucleic acids occurs when radiation ionises an adjacent molecule, which in turn reacts with the genetic material. In view of the fact that water is a major component of most foods and microbes, it is often the adjacent molecule that ends up producing a lethal product (Grecz et al., 1983). According to the paper published by (Arena, 1971), ionising radiation causes water molecule to loose an electron producing HO+. This product immediately reacts with other water molecules to produce a number of compounds, including hydrogen and hydroxyl radicals (OH•), molecular hydrogen, oxygen, and hydrogen peroxide (HO). Hydroxyl radicals are very reactive and are known to interfere with the bonds between nucleic acids within a single strand or between opposite strands. Although biological systems have a capacity to repair both single-stranded and double-stranded breaks of the DNA backbone, the damage occurring from ionising radiation is random and extensive (Razskazovskiy et al., 2003). Therefore, recovery processes in bacteria after their radiation damage unlikely to occur.

The differences in sensitivity to radiation along microorganisms are related to the differences in using chemical and physical structure, and in their bility to recover from the radiation injury. The sount of radiation energy required to control to organisms in food, therefore, varies opening on the resistance of the particular of the number

of organisms present. Besides inherent abilities of microorganisms, several environmental factors such as the composition of the medium, moisture content, temperature during irradiation, presence or absence of oxygen, and others, significantly influence their radiation resistance, particularly in vegetative cells. The actual dose employed is a balance between that what is needed and that what can be tolerated by the product without objectionable changes (e.g. off-flavours, texture changes, flavour alterations).

According to the Codex General Standard for Irradiated Foods (CAC, 2003), ionising radiation foreseen for food processing is limited to high energy photons (gamma rays of radionuclides 60Co and, to a much smaller extent, 137 or X-rays from machine sources with energie to 5 MeV, or to 10 MeV accelerated electrons with energies ing machines. These produced by electron acceleration types of radiation are chosen because: i) they produce ffects; ii) they do not the desired food preery oods or packaging materials; induce radioactivi ble i quantities and at costs that iii) they are ay allow compercial se of the irradiation process (Farkas, 2

The rac tion treatment causes only minimal temper to give in the product and can be applied through packaging materials including those that not withstand heat. This means also that the radicion treatment can be performed also after a kaging, thus re-contamination or re-infestation of the product is avoided.

Long-term animal feeding studies have demonstrated that radiation-pasteurised or -sterilised foods are safe and nutritious also for humans (Thayer et al., 1996). Toxicological and nutritional tests have confirmed the safety of foods irradiated at doses below 10 kGy (Thayer, 1994; Smith & Pillai, 2004). The Directive 1999/3/EC established a Community

Table 1. Directives	08/	requirements	of various	applications	of food	irradiation	(Farkas.	2006)

Preservative en ts and types of application	Dose requirements (kGy)
Killing and sterilising insects (disinfestations of food)	0.2–0.8
Prevention of reproduction of food-borne parasites	0.1–3.0
Decrease of after-ripening and delaying senescence of some fruit and vegetables; extension of shelf-life of food by reduction of microbial populations	0.5–5.0
Elimination of viable non-spore forming pathogenic microorganisms (other than viruses) in fresh and frozen food	1.0–7.0
Reduction or elimination of microbial population in dry food ingredients	3.0–10

list of foods and food ingredients that may be treated with ionising radiation (EC, 1999). According to this directive, maximum allowed overall average absorbed dose is 10 kGy for dried aromatic herbs, spices, and vegetable seasonings. The U.S. Food and Drug Administration (FDA) set a limit for irradiation treatment of culinary herbs, seeds, spices, vegetable seasonings, and blends of these aromatic vegetable substances that must not exceed 30 kGy (Bendini et al., 1998; Olson, 1998). The radiation pasteurisation process for many foods has been approved or endorsed by many world agencies and associations such as the FDA, WHO, the Codex Alimentarius Commission, the American Medical Association, the Institute of Food Technologies, and the health authorities in approximately 40 countries (Thayer et al., 1996).

Safety of irradiation and its effectiveness

It was reported that food cannot become radioactive through exposure to gamma rays from 60Co, 137Cs, X-rays of 5 MeV or less, or accelerated electrons with energy levels below 10 MeV (Becker, 1983). This is a very mild treatment as a radiation dose of 1 kGy represents the absorption of only enough energy to increase the temperature of the product by 0.36°C. In fact, heating, drying, and cooking may cause higher nutritional losses. Moreov certain carcinogenic aromatic and heterocyclic compounds produced during thermal pr of food at high temperatures were not is tifn food after irradiation (Becker, 1983). In eneral food macronutrients (carbohydrates, proteins, dipids) by 10 kGy-range ionising described by 10 kGy-range nutrient contents. However, whigher radiation doses (above 10 kGy/e) eding permitted limit in the EU), the stry and properties of the fibrous graded, and lipids can carbohydrates can become somey at langue, leading to a loss of food (5). Moreover, the irradiation of quality (Miller, lipids at high doses, and especially in the presence of oxygen, can lead to the formation of liquid hydroperoxides. The oxidation products formed often have undesirable odours and flavours (rancidity). It is known that the unsaturated fatty acids are more prone to develop rancidity. Lipid oxidation can be significantly reduced by freezing, and/or by oxygen removal prior to irradiation.

Of the micronutrients, thiamine is of concern because of its relatively high sensitivity to the effects of radiation. Foods that contain thiamine (e.g. pork) are suitable as indicators of food safety regarding the irradiation treatment (Miller, 2005). Minerals have been shown to remain stable (Diehl, 1995). Besides

the nutritional and sensory values, the wholesomeness (lack of mutagenicity, teratogenicity, and toxicity) of irradiated foods has been studied extensively (Thayer, 1990). Neither short nor multigenerational feeding studies have produced any evidence of toxicological effects in mammals due to ingestion of irradiated foods. In fact, multigenerational studies with animals have demonstrated that the ingestion of irradiated foods is completely safe and that the nutritive value remains essentially unchanged (Thayer et al., 1996). The data support the conclusion that properly processed irradiated for the wholesome. Radiolytic changes in foods are visual and are predictable from the radiation chemistry of principal food components. Furthermore possible radiolytic products derived, e.g. finalir ds (most of which are saturated and unsated mydrocarbons, aldehydes, and 2-alkylcycl (utano s) are neither unique nor toxicologically significant in the quantities found in irradiated (Chinn, 1979; Urbain, 1986; Swalow, in for fety arough the destruction of microflora, increased shelf life of fruits, vegetables, spices (The ver and Rajkowski, 1999), and meat (Thayer, 3; Murano et al., 1998), and provide a suitable hernative to chemical treatments, especially for the decontamination of fruits, vegetables, and spices (Boisseau, 1994).

Irradiation of spices and seasonings

Spices present a potential source of microbial contamination for foodstuffs to which they were Spices often originate in developing countries where harvest and storage conditions are inadequately controlled with respect to food hygiene. Thus, they may have been exposed to a high level of natural contamination by mesophylic, sporogenic, and asporogenic bacteria, hyphomycetes, and faecal coliforms (Bendini et al., 1998). Most spices are dried in the open air and can become seriously contaminated by air-and soil-borne bacteria, fungi, and insects. Microorganisms of public health significance such as Salmonella, Escherichia coli, Clostridium perfringens, Bacillus cereus, and toxigenic moulds can also be present. Bacterial plate counts of one to 100 million per gram of spice are usual (Bendini et al., 1998). Good manufacturing practices during harvest and processing could improve their hygienic quality, but frequently not to an extent sufficient to obtain an acceptable microbiological purity level (WHO, 1999). Contaminated dry plant ingredients cause serious troubles in the food processing industry. Therefore, many commercial food processors fumigate spices with methyl bromide to eliminate insects or with ethylene oxide to eliminate bacteria and moulds. However, it has been found that both methyl bromide and ethylene oxide are extremely toxic compounds. Moreover, methyl bromide is potentially capable of depleting the atmospheric ozone layer. Ethylene oxide has been banned in Europe because of safety and environmental concerns, and its use for the treatment of ground spice has been banned in the United States (Loaharanu, 1994). The U.S. Clean Air Act and the Montreal Protocol of the Vienna Convention require that any substance listed as ozone depleting be withdrawn from production and use by the year 2001.

Spices, herbs, and dried vegetable seasonings are currently treated with ionizing radiation to eliminate microbial contamination. It was unambiguously confirmed that the treatment with ionising energy is more effective against bacteria than the thermal treatment, and does not leave chemical residues in the food product (Tjaberg et al., 1972; Loaharanu, 1994; Thayer et al., 1996; Olson, 1998). Thus, ethylene oxide and methyl bromide treatments can be effectively replaced by food irradiation, which in fact is less harmful to the spices than heat sterilisation, which implicates the loss of thermolabile aromatic volatiles and/or causes additional thermally induced changes (e.g. thermal decomposition or production of thermally induced radicals).

Impact of irradiation on organoleptic charand on volatile compounds

Many approaches can be considered for stu the impact of irradiation on organole ic changes and on volatile compounds of These include methods of gas chromatogi with flamematographyionization detection (GC/FID), mass spectrometry (GC/MX evaluation, and GC-olfactometry. To convare two methods of decontamination, power ed black pepper was irradiated with differ recommended doses of gamma rays (5 and 1) Grespectively) and treated with microway different periods (20, 40 and 75 s) (Emam et al., 75). The results obtained indicate that irradiation treatment with controlled doses of gamma irradiation is a safe and suitable technique for decontamination of black pepper. In comparison with microwave treatment, irradiation does not result in extensive loss of flavour compounds. In contrast to the radiation treatment, the thermal treatment of black pepper (using 130°C hot dry steam for 4 min; internal temperature of the treated berries was 95°C) caused a significant increase in the content of monoterpenes (Sádecká et al., 2005a). These changes might have resulted from the formation of thermal isomerisation

products of some terpenes as shown by Richard and Jennings (1971) and Farag Zaied et al. (1996). However, the qualitative composition of volatile oils obtained from control, thermally treated sample, and from irradiated samples of black pepper at various doses (up to 30 kGy) was identical. Statistical analysis of the effects of irradiation on the total content of volatile oils in spices showed no significant differences between irradiated and non-irradiated samples. Sádecká et al. (2005b) showed that the most important changes were observed in the black pepper sample irradiated up to the dose of 30 kGy, which resulted in a threefold increase of caryophyllene oxide concentration and a parallel decrease of sesquiterpene caryophyllene, in comparison in untreated sample. Nevertheless, such a dose in ising energy exceeds three times the el permitted by the observed changes EU legislation (EC, 199). To observed changes induced in terpenes by inadiation could be explained by oxidation or to oxymmon of aromatic rings in terpene molecules. Joain (1986) showed that the products with the product with mation of free radicals by irradiation In a dition, the configuration prone to the which lead alcoh ne terpene skeleton, especially the position groups doublebonds and functional groups, can result in iety of compounds produced. The research has onstrated that gamma irradiation at the dose of WkGy (toxicologically and nutritionally confirmed maximum safe dose) can eliminate microbial load of spices without causing any significant organoleptic or chemical alterations (Farkas, 1973, 1985, 1987; Farkas et al., 1973; Kiss et al., 1978; Ito et al., 1985; Mossei, 1985; Narvaiz et al., 1989; Sádecká et al., 2004, 2005a, b). Lescano et al. (1991) showed that even the treatment at the dose of 30 kGy of ginger, turmeric, cayenne pepper, onion, and garlic powders did not alter their seasoning capacity (odour, flavour and pungency). Analogous results were reported in our paper published recently (Sádecká et al., 2005b). GC-olfactometry analysis using the method of Aroma Extract Dilution Analysis (AEDA) (Grosch, 1993) of volatile oils in black pepper, oregano, and pimento revealed that even a high dose of radiation (30 kGy) had no significant effect and the overall aroma of the treated spices remained unaltered. The exposure of carbohydrates, proteins and lipids to high doses of ionising radiation is known to result in the formation of additional, radiolytically induced compounds. Their origin, structural properties, and quantity are notably influenced by the presence of water. Bendini et al. (1998) showed that dried foods, such as spices, are less sensitive to the ionisation energy

than the hydrated ones. In 1992, USA authorised the ionisation treatment at doses below 30 kGy for microbial decontamination of dried or dehydrated herbs, spices, and vegetable seasonings that are used in small amounts as food ingredients. On the contrary, Antonelli et al. (1998) observed that the composition of dried basil leaf essential oils treated at doses of 5 and 10 kGy was different in comparison to the blank sample. They concluded that radiation caused more evident changes in the composition profiles than the microwave treatment. Subsequently, a sensory test confirmed significant differences between the extracts. The panellists preferred the gamma treated sample, while the microwaved sample was the least appreciated. This discordance in the literature data indicates that it is necessary to standardise analytical procedures in order to obtain results that are intercomparable.

Goulas et al. (2004) observed that irradiation of spices, which are usually pre-packaged to prevent secondary contamination, may cause the formation of low-molecular-weight volatile or non-volatile radiolysis products emanating from the packaging material. They are potentially harmful and may migrate into the food and impair food flavor (Chytiri et al., 2005; Krzymien et al., 2001).

Influence of irradiation procedures on antioxida activity

Murcia et al. (2004) evaluated the effect of the processing technique on the antioxidant of of seven dessert spices (anise, cinnar on, ginger, liquorice, mint, nutmeg, and vanilla). In progrison with the non-irradiated samples, the sextracts of with the non-irradiated samples, the the irradiated spices at 1, 3, 5, and 10 k did not show any significant difference in the pation dant activity in the radical-scavenging associated. Farag and Khawas (1998) evaluat annoxidant properties of anise, caraway, onio, an fennel essential oils extracted from unit (ed) gamma-irradiated and microwaved see s. lam. a-irradiation at 10 kGy and microwave treat ons did not affect the antioxidant property of the essential oils under study. In addition, essential oils extracted from gamma-irradiated fruits were more effective antioxidants in sunflower oil than those produced from microwaved fruits. Topuz and Ozdemir (2004) analysed the capsaicinoid content insundried and dehydrated paprika samples that were irradiated at doses from 2.5 kGy to 10 kGy. The content of capsaicin, dihydrocapsaicin, and homodihydrocapsaicin was increased by about 10% in the samples irradiated at the dose of 10 kGy.

The effects of irradiation by electron beam on the colour and the contents of volatile oils in five-spice powder (prickly ash, star aniseed, cinnamon, clove,

and fennel) and chilli were assessed by Lianzhong et al. (1998). Irradiation enhanced the UV absorption of aqueous extracts of spices, but the darkening phenomenon of spices due to irradiation was temporary. Calucci et al. (2003) studied the effects of gamma-irradiation at 10 kGy on the free radical formation and the antioxidant contents of nine aromatic herbs and spices (basil, bird pepper, black pepper, cinnamon, nutmeg, oregano, parsley, rosemary, and sage). Irradiation resulted in a general increase of quinone radical content (measured using electron paramagnetic resonance (EPR) spectroscopy) in all samples investigated, and in a significant decrease of the total ascorbate and carotenon content of some spices. Calenberg et al. (1993) found no significant differences between EPV spec of the samples of white pepper, sweet parika, and nutmeg irradiated with electron beam 2 at 0–10 kGy. Several studies applied VR sposcopy to investigate free radicals formed by the gamma-radiation treatment of epper, oregano, allspice, ginger, and ground bla ate the influence of the absorbed clove, and amb radiation on the radical-scavenging dose (potenti alcoholic extracts (Franco et al., 2004; Suhaj et 1., 2006; Polovka et al., 2006, 2009). The ved radical-scavenging (antioxidant) activity ice extracts was only slightly influenced by the gamma radiation treatment (Polovka et al., 2006, 2009; Suhaj et al., 2006).

Methods for detection of spices irradiated spices

For the international food trade, simple and reliable methods are needed to identify irradiated foodstuffs. Numerous studies have dealt with the detection methods applicable to irradiated herbs and spices and have also concluded that food irradiation can be considered a radiologically, micro-biologically, and toxicologically safe technology. Nevertheless, questions focusing on nutrient loss, free radical and radiolytic by-products formation, and changes of antioxidant properties during irradiation are still being discussed in the scientific community. In 1993, the European Commission gave a mandate to the European Committee for Standardisation (CEN) to standardise the methods for the detection of irradiated foods. These European Standards have been adopted by the Codex Alimentarius Commission as general methods and are referred to in the Codex General Standard for Irradiated Foods in section 6.4 on 'Postirradiation verification' (Code of Federal Regulation, 2004). In the case of spices, the most important methods are viscosity measurement, electron spin resonance (ESR), and thermoluminiscence (TL). In relation to the formation of paramagnetic species

upon gamma-irradiation food processing, EPR spectroscopy represents a unique detection technique for their characterisation and investigation. In 2000, CEN issued the EN 1787 EPR method for the detection of irradiated foods containing cellulose. The gamma radiation treatment of plant products containing cellulose leads to the generation of a typical three-line EPR signal (Yordanov et al., 1998, 2000; Raffi et al., 2000), attributable to "cellulosic" radicals. Later, more standardised methods were published for the detection of irradiated foods (i.e. EN, 13708, EN, 13751, and EN, 13784). EN 1784 and EN 1785 describe methods for the detection of irradiated food containing fat, and EN 1786 a method for the detection of irradiated food containing bone. Unfortunately, their application is limited by the lifetime of the radiolytically produced free radicals (Yordanov et al., 1998; Formanek et al., 1999; Raffi et al., 2000; Yordanov et al., 2000; Delincée and Soika, 2002; Bayram and Delincée, 2004; Suhaj et al., 2006; Polovka et al., 2006, 2009). Raffi and Stocker (1996) observed that, even though electron spin resonance is known to be a very sensitive method, in the case of spices it did not lead to favourable results because the main radio-induced signal decreased too fast with the storage time and disappeared before the maximal usual commercial storage time. On the other hand, other authors (Polonia et al., 1995) showed a prolonged appearance of cellulose peaks in dried paprika. This enabled include the EPR method in the European prot (Anonymous, 1995). For the purpose of post-ration identification of cellulose containing f presence of relatively weak satellite es of Ms "cellulosic" radical species was acceded so an "cellulosic raucu of unambiguous evidence for gamma-raucu 1 1008 2000). H tion a catment (Yordanov et al., 1998, 2000) H observed that the EPR intendy f the "cellulosic" triplet signal gradually decrease with the storage time, and that the rate of the pearance was dependent on temperature, humanty, the presence of oxygen, and other factors (Ye movet al., 1998, 2000, 2004; e, 04; Polovka et al., 2006, Bayram and D (a). In general, the cellulosic 2009; Suhaj et EPR signal disappared within 70 days to 90 days after the irradiation process (Raffi et al., 2000). Consequently, the method was deemed to fail in the verification of the gamma-radiation treatment and, consequently, was recommended that thermoluminescence techniques should be used (Yordanov et al., 1998; Raffi et al., 2000; Delincée and Soika, 2002; Bayram and Delincée, 2004). Recently, Yordanov et al. (2000) pointed to the different thermal behaviour of EPR signals of non-

irradiated and gamma-radiation treated foods containing cellulose, even after a long storage period after radiation, when the specific "cellulosic" EPR signal is extremely low, and recommended this technique as a method to identify gamma-radiation processed foods. Formanek et al. (1999) utilised EPR spectroscopy and viscometry (with two different sample preparation methods) to detect irradiated black pepper samples. They concluded that the identification of irradiation at doses above 8 kGy is possible using these methods, at least within one month of post-irradiation storage at ambient temperature. The viscosity measurement was reported to be a promising method for the identification of irradiated spices by Mohr and Wichmann (1985) and Heide et al. (1987, 1988). They scribed a method using heat gelatinisation of starc. different spices. In agreement with their findings, Fands et al. (1990a, b) reported a dramatic cere can the dispersion viscosity of heat gelatic sed uspensions of several irradiated spices with n content compared to that of unirradiced proles. This approach may provide a relative simple diagnostic technique for the detection of hadiation treatment of starch-containing states and the effect mentioned be Nated to the radio-depolymerisation of irradiated spices, additional analytical seems starch techniques have been tested to investigate the starch and ge in black and white peppers (Farkas et al., 1997a, b). The colorimetrically determined reducing sar content as well as the alcohol-induced turbidity of hot-water extracts indicated increased starch damage in the pepper samples as a function of the irradiation dose. However, the effect of irradiation had a less dramatic response in these tests than in the viscometric test. The moisture content influences partial radio-depolymerisation of starch. According to the experimental results, the technique of differential scanning calorimetry (DSC), measuring the energy and temperature characteristics of heat gelatinisation of starches, can not rival the sensitivity of viscometric measurements in the detection of radiationinduced changes (Farkas et al., 1990a). Formanek et al. (1994) and Barabassy et al. (1995, 1996) suggested an alternative method to that of heat gelatinisation of starch, which is less time-consuming because it does not require heat gelatinisation. In the case of cinnamon and allspice (15% suspensions, particle size less than 0.16 mm), the apparent viscosities seemed to be as sensitive to the irradiation dose as those of heat gelatinised spices. A comparison of three physical methods (viscometry, DSC, NIRnear infrared spectrophotometry) used in the identification of irradiated spices (cinnamon and

allspice) revealed that the apparent viscosity test demonstrated the best response sensitivity when applied to samples irradiated with different doses. The storage time did not influence the apparent viscosity values. The identification limit of the viscometric method was determined at 2-3 kGy, whereas the limit of NIR spectrophotometric method was determined at 4-5 kGy, respectively. These two methods enabled to distinguish and correctly order the irradiated samples. Ukai and Shimoyama (2003) focused on the thermal behaviour of free organic radicals induced in irradiated black pepper. They found that the radical evolution in the irradiated pepper obeys a single exponential function and yields a unique time constant. Chabane et al. (2001) used thermoluminescence, **EPR** spectroscopy, viscosimetric measurements to determine whether or not a spice had been irradiated. They confirmed that thermoluminescence, using the EN 1788 (2001) official protocol, with an alternative method for the extraction of mineral impurities, led to the proof of irradiation. EPR could be used as a proof of irradiation just up to several weeks after irradiation, and only for some spices. Polovka et al. (2006, 2009) and Suhaj et al. (2006) recently confirmed using EPR spectroscopy that the gamma-radiation treatment of cellulosecontaining spice samples such as ground black per er (Piper nigrum L.), all spice berries (Pimenta official) L.), ginger root (Zingiber officinale Rose and and ulted in the clove buds (Caryophyllus aromaticus L oregano leaves (Origanum vulgare L.) r dose-dependent generation of para one of different structures and properties. V. Jehaviour pel ure, relative is significantly affected by these factors humidity, and storage conhave to be taken into account in order to survey the changes induced by the exorption of gamma-radiation. EPR spects call reference (non-irradiated) samples represert browninglet line with unresolved hyperfine split butable to Mn(II) ions, upon add nal narrow EPR signal is which an superimposed, assigned to stable semiquinone radicals produced by the oxidation of polyphenolics in plants. The analysis of the individual EPR spectra of radiation treated spices showed the formation of new paramagnetic structures of different origin (mostly cellulose and carbohydrate), which exhibited diverse thermal stability and lifetime. The differences between spices indicate that although the spice matrices are very similar, they represent a complex system, and the impact of gamma-irradiation is strongly influenced by the presence of its characteristic specific constituents.

In addition to EPR spectroscopy, microgel

electrophoresis (DNA comet assay) may be used for the identification of irradiated spices (Khan et al., 2002). The detection was successful in the case of poppy seeds, cardamom seeds, caraway seeds, and nigella seeds, but not in pomegranate seeds, ginger root, juniper berries, black peppercorns, nutmeg seed, and rosemary leaves. Nevertheless, for some irradiated foods, DNA comet assay is a rapid and inexpensive screening test. The direct epifluorescent filter technique/aerobic plate count (DEFT/APC) is the European Standard EN 13783 (2001) screening method for the detection of the irradiation treatment of herbs and spices.

Consumer acceptance of in a tellood

Despite the obvious enefits of the application of gamma-radiation or too s technology remains vastly underestim team the food industry. It has not been widely accounted accounted accounted accounted the food industry. It has not been widely accounted accounted the food industry. It has not been widely accounted the food industry. the food industry. It has not of view due two imary reasons, both associated with the telegopertant sources of ionising radiation themselves, dioisotopes 60Co and/or 137Cs, and electro a lerators. The hindering factors in the way of comit reial implementation of the food irradiation ess are politics and consumer advocacy. Similar ion occurred with the heat pasteurisation of milk Me past (Farkas, 2006). Consumer attitudes to food radiation are perceived as a crucial issue. The use of the treatment as a commercial food process depends on its acceptance by consumers. The analyses of attitudes, which vary according to country, national traditions, and political climate, have been extensively reviewed (Board, 1991; Loaharanu, 1993; Bruhn, 1995). In the 1980s, the major concerns of consumer organisations included safety, nutrition, detection, and labelling of irradiated food. There were fears that the process would be used to upgrade low-quality products. In 1987, the International Organisation of Consumers Unions (IOCU), representing consumer organisations in member states across Europe, Asia, and Latin America, adopted a resolution on food irradiation calling for a worldwide moratorium on the subject (Feenstra and Scholten, 1991). At the same time, a number of consumer organisations, including the London Food Commission and the National Coalition to Stop Food Irradiation, questioned the integrity and competence of food irradiation promoters. Health and environmental pressure groups opposed the introduction of the technology. In addition, the media emphasised concerns about food irradiation. Anti-food irradiation groups were successful in influencing legislation, with major food companies taking anti-irradiation stances (Pszczola, 1990; Satin, 1993). The opposition to food irradiation

still exists. Recent actions by opponents of food irradiation include picketing, making inflammatory demands, and pressurising legislation. However, the IOCU has taken a more independent and unbiased approach to food irradiation. In a joint IOCU/ International Consultative Group on Food Irradiation seminar on food irradiation and consumers (IAEA, 1993), a number of recommendations were agreed on areas including applications, trade and environmental implications, regulation and enforcement, consumer acceptance and labelling. It is recognised that the attitudes of consumer organisations can strongly influence consumer opinions (Taylor, Consumer resistance to food irradiation appears to be linked to the growth in popularity of additive-free, minimally processed foods, and environmentally acceptable food processing techniques. However, recent consumer surveys in the USA indicated that the concern about irradiation is smaller than about other food-related issues, such as food additives, pesticides, and animal drug residues (Resurreccion et al., 1995). The concern about the use of irradiation for foods treating appears to centre on the safety of the process. This is often linked to the fear and confusion about radiation itself and the lack of understanding of the process. Providing science-based information on food irradiation leads to positive consume attitudes. Consumer surveys have revealed the acceptability rates ranging from 45% to me 90%, depending on the food commodity a of presentation (Fox, 2002). Opinion p refle level of awareness and quality of t infolmation provided. The information about to promote acceptance. Nowada valer authors (Nayga et al., 2004) reported at consumers would g on their level purchase irradiated food ss and the provision of of concern and away sufficient background internation. These findings emphasise the incommon of educating the public on the contract on the control sy, annology, and the benefits of irradiationally since the public has been shown to more receptive to the negative argument. The key issue with the consumers is the labelling of irradiated foods. There appears to be a marked influence of informative labelling on consumers' willingness to buy irradiated food. The labelling to provide identification is not sufficient. The information that describes the purpose of the treatment promotes consumers' acceptance, e.g. for irradiated chicken, the words 'treated by irradiation to control Salmonella and other foodborne bacteria' (Pszczola, 1993). Additional consumer education and information needs to be available in the place where the product is marketed. There is evidence enabling

to suggest that, if irradiated products offer clear advantages, and if the science-based information on the process is readily available, many consumers would be ready to buy irradiated foods.

Conclusion

Irradiation of food has been proved a safe effective process in controlling microbial contamination without adverse side effects and chemical residues that can be used to improve the safety of our food supply. The future research should focus on the organoleptic quality of irradiated foods, mainly spices, in the dependent of the dose used for I the dose used for ionising radiation. In this contex is necessary to standardise analytical proce resor an unambiguous identification of gam a-radia on and its influence obtain results that are on food quality, **i** intercomparable Vx with the aim of a better F. protection objective consumer information, beir bedom of choice, it is necessary respecting to mak ar international agreement on a careful and consist t labelling of irradiated food products. ientists, educators, government officials, Rec opliers of food irradiation equipment and and § rvices formed the International Council on Food diation (ICFI, 2004) to gather and disseminate formation – based on sound science – on the safety and benefits of food irradiation. Scientists have the responsibility to help the consumer understand the irradiation/radiation process and its potential to improve our lives and protect our health, as does pasteurisation of milk, canning, and freezing.

References

Anonymous. 1995. Foodstuffs-detection of irradiated food containing cellulose – method by ESR spectroscopy. PrEN 1787, CEN, Brussels.

Antonelli, A., Fabbri, C. and Boselli, E. 1998. Modifications of dried basil (Ocinum basilicum) leaf oil bygamma and microwave irradiation. Food Chemistry 63: 485–489.

Arena, V. 1971. In: Ionizing Radiation and Life. Mosby, St. Louis.

Barabassy S., Formanek Z. and Koncz A. 1995. Detection of irradiation treatment of cinnamon and allspice using physical methods (Viscometry, DSC, NIR). Acta Alimentaria 24: 55–67.

Barabassy, S., Sharif, M., Farkas, J., Felfoldi, J., Koncz, A., Formanek, Z. and Kaffka, K. 1996. Detection Methods for Irradiated Foods. The Royal Society of

- Chemistry, Cambridge: 185-201.
- Bayram, G. and Delincée, H. 2004. Identification of irradiated Turkish foodstuffs combining various physical detection methods. Food Control, 15: 81–91.
- Becker, R.L. 1983. In: Elias, P.S. and Cohen, A.J. (eds). Recent Advances in Food Irradiation. Elsevier Biomedical Press, Amsterdam, New York: 285.
- Bendini, A., Galina Toschi, T. and Lercker, G. 1998. Influence of gamma irradiation and microwaves on the linear unsaturated hydrocarbon fraction in spices. Zeitschrift für Lebensmittel Untersuchung und Forschung A 207: 214–218.
- Board, R. 1991. Consumer acceptance of irradiated foods in the United States. In: Thorne S. (ed.): Food Irradiation. Elsevier Applied Science, London, New York: 61–86.
- Boisseau, P. 1994: Irradiation and the food industry in France. Food Technology, 48: 138–140.
- Bruhn, C.M. 1995. Consumer attitudes and market response to irradiated food. Journal of Food Protection 58: 175–181.
- CAC (Codex Alimentarius Commission). 2003 General Standard for Irradiated Foods. COD (\$57) 106-1983. Rev. 1-2003.
- Calenberg, S., Vanhaelewyn, G., Cleemp O., Callens, F., Mondelaers, W. and Huye baer, A. 1998. Comparison of the effect of X-ray v. Lectron beam irradiation on some selectory splits. Lebensmittel Wissenschaft und Techpol
- Calucci, L., Pinzono, C. Zah, meneghi, M. and Capocchi, A. 2003. Effects of pradiation on the free radical and antioxidant context in the aromatic herbs and spices. Journal of agricultured and Food Chemistry 51: 927–934.
- Chabane, S., Pouliquen-Sonaglia, I. and Raffi, J. 2001. Detection of irradiated spices by different physical techniques. Canadian Journal of Physiology and Pharmacology/Review of Canadian Physiology and Pharmacology 79: 103–108.
- Chinn, H.I. 1979. Evaluation of the health aspects of certain compounds found in irradiated beef. Chapter I: Further toxicological considerations of volatile products. Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda: 1–29.
- Chytiri, S., Goulash, A.E., Badeka, A., Riganakos, K.A. and Kontominas, M.G. 2005. Volatile and non-volatile radiolysis products in irradiated multilayer coextruded food –packaging films containing a buried layer of

- recycled low-density polyethylene. Food additives and contaminants 22: 1264-1273.
- Code of Federal Regulation. 2004: 21CFR179: Irradiation in the Production, Processing and Handling of Food. Title 21, Volume 3, Revised as of Apr. 1.
- Delincée, H. and Soika, C. 2002. Improvement of the ESR detection of irradiated food containing cellulose employing a simple extraction method. Radiation Physics and Chemistry 63: 437–441.
- Diehl, J.F. 1994. Assessment wholesomeness of irradiated foods. Acta Alimentan. 195–214.
- Diehl, J.F. 1995. In: Sarty of Indiated Foods. 2nd Ed. Marcel Dekker, Jrc. Vew Ork: 310, 454.
- EC. 1999. Directive 1990 EC of the European Parliament and of the European of 22 February 1999 on the establishment of a Community list of foods and food ingression at a with ionising radiation. Official Journal of the European Communities, L 66/24.
- Eman V.A., Farag, S.A. and Aziz, N.H. 1995. Comparative effects of gamma and microwave irradiation on the quality of black pepper. Zeitschrift für Lebensmittel Untersuchung und Forschung 201: 557–561.
- EN 13708 2001. European Standard. Detection of irradiated food containing crystalline sugar by ESR spectroscopy. European Committee for Standardization, Brussels.
- EN 13751. 2002. European Standard. Detection of irradiated food using photostimulated luminescence. European Committee for Standardization, Brussels.
- EN 13783. 2001. European Standard. Detection of irradiated food using Direct Epifluorescent Filter Technique/Aerobic Plate Count (DEFT/APC) Screening method. (European Committee for Standardization, Brussels.
- EN 13784. 2001. European Standard. DNA comet assay for the detection of irradiated foodstuffs Screening method. European Committee for Standardization, Brussels.
- EN 1784. 1996. European Standard. Detection of irradiated food containing fat Gas chromatographic analysis of hydrocarbons. European Committee for Standardization, Brussels.
- EN 1785. 1996. European Standard. Detection of irradiated food containing fat Gas chromatographic/mass spectrometric analysis of 2-alkylcyclobutanones. European Committee for Standardization, Brussels.
- EN 1786. 1996. European Standard. Detection of irradiated food containing bone Method by ESR spectroscopy.

- European Committee for Standardization, Brussels.
- EN 1787. 2000: European Standard. Determination of irradiated food containing cellulose: Method by ESR Spectroscopy. European Committee for Standardization, Brussels.
- EN 1788. 2001. European Standard. Thermoluminescence detection of irradiated food from which silicate minerals can be isolated Method by thermoluminescence. European Committee for Standardization, Brussels.
- Farag, R.S. and Khawas, K.H. 1998. Influence of gammairradiation and microwaves on the antioxidant property of some essential oils. International Journal of Food Sciences and Nutrition 49: 109–115.
- Farag Zaied, S.E.A., Aziz, N.H. and Ali, A.M. 1996. Comparing effects of washing, thermal treatments and gamma irradiation on quality of spices. Nahrung 40: 32–36.
- Farkas, J. 1973. Radurization and radicidation of spices. In: Aspect of the introduction of food irradiation in developing countries. IAEA, Vienna: 43–59.
- Farkas J. 1985: Radiation processing of dry food ingredients. Radiation Physics and Chemistry, 25: 271–280.
- Farkas, J. 1987. Decontamination including parasite of dried chilled and frozen foods by irradization. Alimentaria 16: 351–384.
- Farkas, J. 2004. Charged particle and phon intractions with matter. In: Mozumder A., Phono Lods): Food Irradiation. Marcel Dekker, New 75–812.
- Farkas, J. 2006. Irradiation for the season of the season
- Farkas, J., Beczner, J. and S. ze, K. 1973. Feasibility of irradiation of spices with special reference to paprika. In: Radiation Process on of Food. IAEA, Vienna: 389–402.
- Farkas, J., Koncz, and Sharif, M. 1990a. Identification of irradiated dry ingredients on the basis of starch damage. Radiation Physics and Chemistry 34: 324–338.
- Farkas, J., Sharif, M.M. and Barabassy, S. 1990b. Analytical studies into radiation-induced starch damage in black and white peppers. Acta Alimentaria 19: 273–279.
- Feenstra, M.H. and Scholten, A.H. 1991. Consumer acceptance of irradiated foods. In: Thorne S. (ed.): Food Irradiation. Elsevier Applied Science, London, New York: 97–128.
- Formanek, Z., Barabassy, S. and Koncz, A. 1994. Viscosity

- investigation of irradiated allspice and cinnamon. In: Proceedings of the 1st International Conference on Food Physics. Journal of Food Physics (Supplement) Part 2: 20–22.
- Formanek, Z., Barabassy, S., Chabane, S., Molina, C. and Deyris, V. 1999. Identification of irradiation in coded black pepper samples by different physical methods (viscosimetry and ESR). Acta Alimentaria 28: 103–109.
- Fox, J.A. 2002. Influence on purchase of irradiated foods. Food Technology 56 (11): 34–37.
- Franco, R.W.A., Neto, L.M., Kandal, S.A., Furlan, G.R., Walde, r.J.M.M. and Colnago, L. 2004. Identification of irradiation treatment in black pepper by electron paramagnetic resonance. Into actional Journal of Food Science and Technology 39 395–401.
- Goulash, A.E., Agana, K.A. and Konotminas, M.G. 2004. Eff a bionizing radiation on physicochemical and manical properties of commercial monolayer and all reseministic plastic packaging materials. Padiata obysics and chemistry 69: 411-417.
- Grecz, C., Rowley, D.B. and Matsuyama, A. 1983. The action of radiation on bacteria and viruses. In: Preservation of Foods by Radiation. Vol. 2. CRC Press, Boca Raton.
- Grosch, W. 1993. Detection of potent odorants in foods by aroma extract dilution analysis. Trends in Food Science & Technology 4: 68–73.
- Heide L., Mohr E., Wichmann G., Albrich S., Bögl K.W. 1987: Viskositätsmessung Ein Verfahren zur Identifizierung strahlenbehandelter Gewürze? In: ISH-Heft 120, Institut für Strahlenhygiene des Bundesgesundheitsamtes, Neuherberg b/München: 71.
- Heide, L., Mohr, E., Wichmann, G. and Bögl, K.W. 1988. Are viscosity measurements a suitable method for the identification of irradiated spices? In: Bögl, K.W., Regulla, D.F. and Suess, M.J. (eds): Health Impact, Identification, and Dosimetry of Irradiated Foods. ISH-Heft 125. Institut für Strahlenhygiene des Bundesgesundheitsamtes, Neuherberg b/München: 176–189.
- IAEA (International Atomic Energy Agency). 1993. Report of the ICGFI/IOCU Seminar on Food Irradiation and Consumers. The Netherlands, Sept. 1993.
- ICFI (International Council on Food Irradiation) 2004: Available at http://www.icfi.org
- Ito, H., Watanabe, H., Bagiawati, S., Muhamed, I.J. and Tamura, N. 1985. Distribution of microorganisms in

- spices and their decontamination by gamma irradiation. In: Food Irradiation Processing. IAEA, Vienna: 271.
- Khan, A.A., Khan, H.M. and Delincée, H. 2002. Identification of irradiated spices using the novel technique of DNA comet assay. Journal of Food Science 67: 493–496.
- Kiss I., Zachariev G., Farkas J., Szabad J., Toth-Pesti K. 1978: The use of irradiated ingredients in food processing. In: Food Preservation by Irradiation, Vol. I. IAEA, Vienna: 263–274.
- Krzymien, M.I.E., Carlsson, D.J., Deschenes, L. and Mercier, M. 2001. Analyses of volatile transformation products from additives in gamma-irradiated polyethylene packaging. Food additives and Contaminants 18: 739-749.
- Lescano, G., Narvaiz, P. and Kairiyama, E. 1991. Sterilization of spices and vegetable seasoning by gamma radiation. Acta Alimentaria 20: 233–242.
- Lianzhong, D., Songmei, Z., Qiying, G. and Yan, Z. 1998. Study on irradiation sterilization of spices. Institute of Aplied Technical Physics of Zhejiang Province, China. Available at http://epaper.kek.jp/a98/apac98/6d059.pdf
- Loaharanu, P. 1993: Opinion polls and marketing to swith irradiated food. In: Proceedings of a Smin. Harmonization of Regulations on Food Lastion in Asia and the Pacific. Kuala Lungar, 13, IAEATECDOC-696: 53–60.
- Loaharanu, P. 1994. Status and prospects for adiation. Food Technology 52: 124–131
- Miller, R.B. 2005. In: Electronic radiation of Foods. Springer Science + Bu m Media, Inc., New York: 8–11.
- Empis, J. 1995. Verification of irradiated peppers by electron spiror ace, thermoluminescence and viscosity. Radia of Physics and Chemistry 46: 757–760.
- Mohr, E. and Wichmann, G. 1985. Viskositätserniedrigungen als Indiz für eine Cobaltbestrahlung an Gewürzen? Gordian 5: 96–99.
- Mossei, D.A.A. 1985. Irradiation: an effective mode of processing food for safety. In: Food Irradiation Processing. IAEA, Vienna: 251–280.
- Murano, P.S., Murano, E.A. and Olson, D.G. 1998. Irradiated ground beef: Senzory and quality changes during storage under various packaging conditions. Journal of Food Science 63: 548–551.

- Murcia, M.A., Egea I. and Romojaro, J. 2004. Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. Journal of Agricultural and Food Chemistry 52: 1872–1881.
- Narvaiz, P., Lescano, G., Kairiyama, E. and Kaupert, N. 1989. Decontamination of spices by irradiation. Journal of Food Safety 10: 49–61.
- Nayga, R.M. Jr., Poghosyan, A. and Nichols, J. 2004. Will consumers accept irradiated food products? International Journal of Consumer Studies 28: 178–185
- Olson, D.G. 1998. Irradiation food 1 od Technology 52: 56–62.
- Polonia, I., Esteves, M. A. L. Polovka, M., Brezová, V., Staško, A., Mazu, M., Suhaj, M. and Šimko, P. 2006. EPR in scigations of gamma-irradiated ground black person. Rate tion Physics and Chemistry 75: 309–32
- Polovk Mezová, V. and Šimko, P. 2009. EPR spec copy II: A tool to characterize the gamma irradia ed foods. Journal of Food and Nutrition esearch (In press)
- Ps. czola, D. 1990. Food irradiation: countering the tactics and claims of opponents. Food Technology 44 (6): 92–97.
- Pszczola, D. 1993. Irradiated poultry makes US debut in Midwest and Florida markets. Food Technology 47 (11): 89–96.
- Raffi, J. and Stocker, P. 1996. Electron paramagnetic resonance detection of irradiated foodstuffs. Applied Magnetic Resonance 10: 357–373.
- Raffi, J., Yordanov, N.D., Chabane, S., Douifi, L., Gancheva, V. and Ivanova, S. 2000. Identification of irradiation treatment of aromatic herbs, spices and fruits by electron paramagnetic resonance and thermoluminescence. Spectrochimica Acta A 56: 409–416.
- Razskazovskiy, Y., Debije, M.G., Howerton, S.B., Williams, L.D. and Bernhard, W.A. 2003. Strand breaks in X-irradiated crystalline DNA: Alternating CG oligomers. Radiation Resistance Research 160: 334–339.
- Resurreccion, A.V.A., Galvez, F.C.F., Fletche,r S.M. and Misra, S.K. 1995. Consumer attitudes towards irradiated food: the results of a new study. Journal of Food Protection 58: 193–196.
- Richard, H.M., Jennings, W.G. 1971. Volatile composition

- of black pepper. Journal of Food Science 36: 584-589.
- Sádecká J., Kolek E., Salková Z., Petríková J., Kovác M. 2004: Effect of gamma-irradiation on microbial decontamination and organoleptic quality of black pepper (Piper nigrum L.). Czech Journal of Food Sciences, 22: 342-345.
- Sádecká, J., Kolek, E., Petka, J. and Suhaj, M. 2005a. Influence of two sterilization ways on the volatiles of black pepper (Piper nigrum L.). Chemické Listy 99: 335-338.
- Sádecká, J., Kolek, E., Petka, J. and Kovác, M. 2005b. Impact of gamma-irradiation on microbial decontamination and organoleptic quality of oregano (Origanum vulgare L.). In: Proceedings of Euro Food Chem XIII, Hamburg: 590-594.
- Satin, M. 1993. Food Irradiation: a Guidebook. Technomic Publ. Co., Lancaster: 125-151.
- Smith, J.S. and Pillai, S. 2004. Irradiation and food safety. Scientific Status Summary from Institute of Food Technologists. Food Technology 58 (11): 48-55.
- Suhaj, M., Rácová, J., Polovka, M. and Brezová, V. 2006. Effect of gamma-irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chemistry 97: 696-704.
- Swalow, A.J. 1991. Wholesomeness and safety irradiated foods. In: Friedman M. (ed.): Nut and Toxicological Consequences of Food Pa A Symposium, Washington, April 1–5, Press, New York: 11-31.
- Taylor, J. 1989. Consumer views on accel **W** irradiated food. In: Proceedings Confere cance, Control of and Trade in Irradiated F . International Atomic Energy Agency Y nna
- radiation benefits and concerns. Thayer, D.W. 1990. Food **1**3 147–169. Journal of Food On
- Thayer, D.W. 19 ding shelf life of poultry and on processing. Journal of Food meat by irrad Protection 56: 831-833, 846.
- Thayer, D.W. 1994. Wholesomeness of irradiated foods. Food Technology 3: 132–136.
- Thayer, D.W., Josephson, E.S., Brynjolfsson, A. and Giddings, G.G. 1996. Radiation Pasteurization of Food. Council for Agricultural Science and Technology - CAST. Ames, Apr. 1996: 7.
- Thayer, D.W. and Rajkowski, K.T. 1999. Developments in irradiation of fruits and vegetables. Food Technology 53 (11): 62-65.

- Tjaberg, T.B., Underdal, B. and Lunde, G. 1972. The effect of ionizing radiation on the microbial content and volatile constituents of spices. Journal of Applied Bacteriology 35: 473-478.
- Topuz, A. and Ozdemir, F. 2004. Influences of gamma irradiation and storage on the capsaicinoids of sundried and dehydrated paprika. Food Chemistry 86: 509-515.
- Ukai, M. and Shimoyama, Y. 2003. Free radicals in irradiated pepper: An electron spin resonance study. Applied Magnetic Resonance 24: 1–11.
- Urbain, W.M. 1986. In: Food tion. Academic Press, Inc., Orlando: 351. WHO : High-dose irradiation: Wholesomenes of food irradiated with doses above 10 kGy. oport joint FAO/IAEA/
 O Tehnical Report Series joint FAO/IAEA/ WHO study group 890. World Health rgan on, Geneva.
- eva, V., Radicheva, Yordanov, Gand v, M. and Penchev, P. 1998. Hristova Compa (iv identification of irradiated herbs by the meth or electron paramagnetic resonance and escence. Spectrochimica Acta A 54:
- nov, N.D. and Gancheva, V. 2000. A new approach r extension of the identification period of irradiated cellulose-containing foodstuffs by EPR spectroscopy. Applied Radiation and Isotopes, 52: 1958–198.
- Yordanov, N.D. and Aleksieva, K. 2004. X-and Q-band EPR studies on fine powders of irradiated plants. New approach for detection of their radiation history by using Q-band EPR spectrometry. Radiation Physics and Chemistry 69: 59-64.